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Abstract. Many questions in urban and regional economics can be characterized as
including both a spatial and a time dimension. However, often one of these dimensions is
neglected in empirical work. This paper highlights the danger of methodological inertia,
investigating the effect of neglecting the spatial or the time dimension when in fact both
are important. A tale of two research teams, one living in a purely dynamic and the other
in a purely spatial world of thinking, sets the scene. Because the research teams’ choices
to omit a dimension change the assumed optimal estimation strategies, the issue is more
difficult to analyze than a typical omitted variables problem. First, the bias of omitting
a relevant dimension is approximated analytically. Second, Monte Carlo simulations
show that the neglected dimension projects onto the other, with potentially disastrous
results. Interestingly, dynamic models are bound to overestimate autoregressive behavior
whenever the spatial dimension is important. The same holds true for the opposite case.
An application using the well-known, openly available cigarette demand data supports
these findings.
Keywords: Spatial dynamic panel data Monte Carlo simulation Spatial interaction Dynamic model

Omitted variable bias
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1 Introduction

In regional economics, it has long been understood that units of observation may not be
considered independent from one another across space, often associated with Tobler’s
first law of geography. The beauty of one house may increase the perceived beauty of
neighboring houses. A region may be forced to decrease local tax rates because its close-by
regions chose to decrease theirs in order to retain its tax base. One region’s negative
employment shock may not only increase local unemployment but also unemployment in
neighboring regions due to the mobile workers. From early influential contributions like
Cliff, Ord (1972), a formidable spatial econometric literature has grown. Kelejian, Piras
(2017) offer an extensive overview.

Economists are also aware about the dynamics of economic processes. The notion that
the state of a variable in some period depends on the state in the previous period plays a
major role in many fields. In general, any partial adjustment process may be seen as a
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motivation. A classic example is the convergence literature, where the contribution of
Islam (1995) is among the early ones to exploit panel data. Most readers have likely dealt
with issues in estimating dynamic models themselves. This notion has too led to a massive
body of econometric tools that enable researchers to use panel data to investigate dynamic
processes. For example, sophisticated methods that deal with incidental parameter
problems that come with short-in-time panel data have evolved and found widespread
use. Hsiao (2014) offers a comprehensive overview of econometric methods for (dynamic)
panel data. In the current discourse, generalized method of moments (GMM) approaches
in the line of Arellano, Bond (1991) and Blundell, Bond (1998) are widely used, but have
received considerable criticism about their suitability in empirical applications. While
these GMM methods tend to suffer from instrument proliferation and are likely to break
down when facing non-random initial observations or in proximity of unit roots, they
remain popular due to their availability and the possibility to exploit internal and external
instruments (Roodman 2009).

With the increasing availability of geo-referenced panel data, methods that take into
account dependence over time and space have emerged. These methods are relatively new
to the market, and have hardly been used in regional economics, at least in relative terms.
Even if applied, dynamic models tend to be the main estimation methodology, while spatial
dynamic models appear to be used mainly to assess robustness. It seems that spatial
dynamic applications are more data-driven than formally theoretically justified. However,
there are some exceptions worth mentioning that expanded more ‘traditional’ approaches
to include spatial and dynamic properties. For example, Elhorst et al. (2013) investigate
spatial diffusion of financial liberalization among countries using a spatial dynamic
approach similar to the one discussed below. Expanding the famous Blanchard-Katz labor
market model, Vega, Elhorst (2014) find highly significant spillover effects applying a
spatial dynamic Durbin model. Similarly, Rios (2017) report significant indirect effects of
employment growth with respect to unemployment rates among European NUTS 2 regions,
which appear sizable especially in the long-run. One of the traditional motivations of
(cross-sectional) spatial econometric approaches are house prices. Including a spatial time
lag in a panel smooth transition regression model, Pijnenburg (2017) reports significant
heterogeneity in spatial dependence. As a last example, Wanzenböck, Piribauer (2018)
investigate R&D networks across NUTS 2 regions, highlighting strong spatial and dynamic
effects in the course of a spatial Durbin model.

The aim of this study is to raise awareness about the problems research can encounter
by neglecting dependence in either space or time from an econometric point of view. In
order to meet this goal, the remainder of this paper builds on a tale of two research teams,
where one team is located in a purely dynamic and the other in a purely spatial world of
thinking. Both teams are handed the same data and each tries to explain the process as
they see fit.

A few words of caution are in order. Even though the points made here are closely
related to the typical omitted variables argument, the specific issues to be dealt with are
a little different. An omitted variable usually does not change the optimal estimation
strategy. Here, the preferred estimation methods of both teams will abstract from the
optimal one. In fact, both teams aim for a suitable estimator given their beliefs about the
underlying data generating process (DGP). Hence, ‘Team Dynamic’ fits a dynamic model,
while ‘Team Spatial’ fits a (static) spatial panel model. Still, the mistakes made by both
teams may be categorized as an omitted variable problem. However, they are more severe
because they change the estimation method and, hence, the conceptualization of the DGP.
In fact, both teams will make systematic errors in explaining the dynamics of the process.
The question this paper tries to answer is whether the remaining dimension may still be
estimated in an unbiased manner. In particular, is Team Dynamic able to estimate time
dependence accurately? Is Team Spatial able to infer on spatial dependence without bias?
The answer to both questions is no. In fact, it is possible to determine the direction of
each bias.

As a first step, approximations of the mistakes made by both teams are derived
analytically. The results show that the autoregressive parameter is overestimated in
absolute terms whenever there is spatial dependence. Consequently, marginal effects of
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covariates may also be severely biased, as discussed in Section 5. The other way around,
results are less clear, but point in the same direction. Note that in the course of this
paper, the term autoregressive always refers to the time dimension.

These approximations are put to the test using a Monte Carlo simulation. The results
confirm the expectations and show potentially drastic outcomes. Lastly, a brief application
using the openly available ‘Baltagi cigarette demand’ data (Baltagi, Li 2004) supports
the findings.

2 A spatial dynamic process

As laid out in the introduction, the task is to infer the bias of omitting the time or spatial
dimension. Naturally, there are multiple ways to include both types of dependence in
a DGP that serves as a starting point. Leaning on Yu et al. (2008) and the examples
stated before, assume a DGP that incorporates dependence over time as well as space in
a seemingly separated manner. Specifically, define

Ynt = γ0Yn,t−1 + λ0WnYnt +Xntβ0 + cn0 + dt0ln + Vnt, (1)

where Ynt is the n × 1 vector of the outcome variable at time t that depends on its time lag
Yn,t−1, its contemporaneous spatial lag WnYnt, an exogenous time-varying variable Xnt,
and region specific fixed effects cn0 (all n × 1). Further, the model includes a time-fixed
effect given by a scalar term dt0 multiplied with the size-n vector of ones, ln, and a n × 1
vector of i.i.d. error terms Vnt with mean zero and variance σ2

0 . Scalars γ0, λ0, and β0 are
the coefficients of interest. The restriction to one exogenous variable Xnt is for notational
convenience only. The n × n spatial weights matrix Wn is assumed non-stochastic and
with diagonal values of zero. The common notion is that the more influence unit i has on
another unit j, the larger the weight wij . As usual, let Wn be constant over time. For
the following approximations it is useful to assume maximum-row-normalization, which
preserves the symmetry of Wn. Note that whether one assumes local or global spillovers
depends on the assumed DGP and how it translates into marginal effects, not the spatial
weights matrix. Equation (1) implies the presence of global spillovers.

It has to be noted that the bulk – all except one – of the studies mentioned in
the introduction as already applying spatial dynamic approaches use a spatial dynamic
Durbin model (SDD), which would include a spatial time lag as well as a spatial lag of
the covariate. This is motivated by LeSage, Pace (2009) for empirical applications due to
preferable behavior in the presence of omitted variables or spatially correlated residuals,
and Elhorst (2012) suggests a general-to-specific model selection approach where the
Durbin model represents the most general approach.1 For the ease of the argument,
however, it is preferable to stick to seemingly ‘separated’ dimensions while noting that
the DGP described in (1) is nested in a SDD model.

In the following, cases with negative time dependence are disregarded due to their
near nonexistence in (regional) economics. Small samples in terms of the time dimension
may require bias reduction procedures Team Dynamic and Team Spatial. In order to
focus on the research question at hand, let us assume that the data provided to the teams
has time dimension T large enough, such that this issue can too be disregarded.

Because explicit solutions of the biases are not available, either because of the presence
of global spillovers or the estimation procedure, approximations are presented. The
conclusion is that the direction of the bias can be determined, and that it can be
approximated fairly simply.

Usually, exogenous variables are not of much interest in specifying DGPs, since the
property of being exogenous suffices for proper estimation. Key to the derivations that
follow in the next section is strict exogeneity of the covariate, implying that innovations
in the DGP of the covariate are uncorrelated with contemporaneous and past innovations
in the DGP of the dependent variable. Albeit not discussed in the literature, there is
no reason to assume spatial behavior in the dependent variable but to deny it to the

1It is worth mentioning that the evolution of spatial dynamic panel models is still progressing. For
example, Shi, Lee (2017) extend spatial dynamic panel models with interactive fixed effects, that is,
different factor loadings of unobserved time-effects that may affect groups of units heterogeneously.
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covariate. In fact, strict exogeneity is bound to break down if the covariate itself follows a
dynamic DGP. The interested reader is relegated to Appendix D, where the case of a full
spatial dynamic DGP of the covariate is investigated, after reading the following sections.

Lee, Yu (2010b) provide limited evidence on the effect of omitted time- and spatial-
terms based on Monte Carlo simulations for spatial dynamic panel data models. Their
focus, however, is on comparing the performance of ML estimation with respect to different
types of panel transformations. Omitting the spatial lag leads to a potentially large bias
in the estimated coefficient of the time lag and vice versa, while estimated coefficients of
exogenous variables appear unaffected. In the following, the argument is formalized and
the impact on marginal effects of the covariate is analyzed.

3 The tale

Before telling the tale of the two research teams – Team Dynamic and Team Spatial
– it has to be stressed again that the analytical derivations of the estimates presented
in this section are approximations, based on the first two elements of the Neumann
series representation of An = (In − λ0Wn)

−1
=
∑∞

k=0 (λ0Wn)
k
with the usual constraint

|λ0|< 1, where In denotes an identity matrix of size n. This approximation is especially
precise for low to moderate values of λ0, as the share of An explained by the first two terms
I + λ0Wn equals 1− λ20. As mentioned in the beginning, both research teams are handed
the same data with the goal to explain the DGP as best as possible, thereby abstracting
from usual omitted variable problems. While equally investigating the difference between
estimated and true parameters and marginal effects by inserting the DGP in the estimate,
the estimator is the not the one that would fit the DGP optimally.

Team Dynamic misreads the data, or is misguided by theory, such that the assumed
DGP is purely dynamic. This implies that λ0 is wrongly set to zero. A typical problem
with dynamic panels is that the within-estimator is biased due to the correlation of the
error terms and lagged dependent variable. This bias is of the order O(1/T ) (Nickell
1981). Therefore, the strategy is to take first differences, indicated by a bar. In the
sense of Anderson, Hsiao (1982) and Arellano, Bover (1995), Team Dynamic may apply a
two-stage least squares approach in which the endogenous lag of the first difference of
the dependent variable (Ȳ−) is instrumented by earlier lags to avoid the bias caused by
taking first differences. Regardless of which of these moment estimators is applied, the
estimation will be of the form

ϕTD =
(
Γ̄′PZ Γ̄

)−1
Γ̄′PZ Ȳ , (2)

where the estimated parameters of Team Dynamic (TD) are collected in ϕTD = (γTD, βTD)′,
Γ̄ =

[
Ȳ−, X̄

]
, and PZ is the projection matrix of the instruments chosen by Team Dynamic.

As already mentioned, let us assume that the time dimension is large. Hence, the Nickell
problem may be disregarded such that using PZ = InT yields a sufficiently consistent
estimator given the belief of Team Dynamic (Hsiao 2014). Using W = IT ⊗Wn and
inserting the first-differenced reduced form of (1), the parameter bias of neglecting the
spatial dimension is approximated by (see Appendix A)

plim [ϕTD − ϕ0] ≈ λ0

(
Γ̃′Γ̃
)−1

Γ̃′W Γ̃ϕ0

≈ λ0

(
Γ̃′Γ̃
)−1 (

Γ̃′Γ̃⊙M
)
ϕ0, (3)

where Γ̃ = PZ Γ̄ and ϕ0 = (γ0, β0)
′ captures the true parameter values.2 The symmetric

matrix M captures spatial correlation in the fashion of Moran’s I. The off-diagonal values
of M tend to zero as long as the covariate X remains exogenous, justifying the search
for (quasi-) random assignments of covariates in the literature. In principle, one can
also assume a non-spatial DGP for X̃ = PZX̄. The important characteristic, as in any
dynamic model, is the strict exogeneity. Appendix A offers detailed derivations.

2Note that, in general, Γ̃′W Γ̄ ̸= Γ̃′W Γ̃ even when PZ and W are symmetric.
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Because
(
Γ̃′Γ̃
)−1

is a concentration matrix, the elements ηij are negative partial

covariances, and diagonal elements ηi correspond to inverse residual variances of regressing
all but one components of Γ̃ on the component of the corresponding row/column (Cox,
Wermuth 1996). Under strict exogeneity, as spelled out, for example, in equation
(D.4), these off-diagonal values will be zero unless the innovations in the DGP of X̃ are
autocorrelated. The more complex case in which the covariate is not strictly exogenous is
derived in Appendix A, equation (A.4), showing that potential ‘cross-effects’ might blur
the main bias term as presented here. This case is further discussed in Section 5 and
Appendix D.

Given these arguments, the approximated bias in both coefficients is easily derived as

plim (ϕTD − ϕ0) ≈ λ0

[
γ0ηỸ−

σ2
Ỹ−
mỸ−

β0ηX̃σ
2
X̃
mX̃

]
, (4)

where σ2 indicates a variance, mỸ−
= Ỹ ′

−WỸ−/Ỹ
′
−Ỹ− is Moran’s I of Ỹ−, mX̃ similarly

represents Moran’s I of the covariate, and in accordance to above notation, Ỹ− = PZ Ȳ−.
Hence, the sign of the bias of each coefficient, additionally to its own sign, depends
on λ0 and the spatial dependence in its corresponding DGP. As shown in Appendix
B, the sign of mỸ−

in (3) is determined solely by λ0 under the common assumption

|λ0|, |γ0| ≤ 1. This consequence is that Team Dynamic will always overestimate the true
value of γ0 in absolute terms and give too much weight to the time dimension whenever
the spatial dimension is important. In cases where time dependence is already large,
Team Dynamic will become more likely to report non-stationarity when in fact the DGP
may be stationary.

Note that the measure of spatial dependence in the covariate, mX̃ , is based on the
spatial structure defined in the true DGP, Wn, by construction. As long as mX̃ =

X̃ ′WX̃/X̃ ′X̃ is nil, the coefficient estimate βTD will not be affected. In any other
case, the sign of the bias is given by the sign of the product of λ0 and β0 or in short:
sgn(βTD − β0) = sgn(λ0β0). Therefore, this distortion changes on a case-by-case basis.
As usual, whenever the spatial lag is unimportant (λ0 = 0), spatial heterogeneity in
explanatory variables will not lead to biased estimates, as (3) clarifies.

Interestingly, these results are in line with evidence of omitting spatial lag terms
in cross-sectional and non-dynamic panel models. Regarding the cross section, Pace,
LeSage (2008) report that the coefficient estimate of the covariate will show an asymptotic
bias when the spatial lag term is neglected if there is spatial dependence in both, the
covariate as well as the regressand. The authors further report that this bias is increasing
in either spatial dependence. Noticably, the results regarding panel models reported
in Franzese Jr, Hays (2007) follow suit, and show the same pattern regardless of cross-
sectional size or the number of observed periods. Appendix D, where the covariate is
allowed to exhibit spatial and time dependence, shows that this is also the case here,
as illustrated in Table D.3. Effects on marginal effects are further investigated in Section 5.

Team Spatial is confident that the data represents a spatial-autoregressive process and
believes γ0 = 0. Here, fixed-effects are concentrated out by a usual within-transformation
and a tilde indicates this transformation. For practical purposes, one may consider the
transformation proposed in Lee, Yu (2010a), which does not create time dependence in
the disturbances. The bias of neglecting the time dimension is approximated analytically
by comparing the likelihood estimators of a full model, indicated by superscripted ‘0’, and
the model chosen by Team Spatial, indicated by ‘TS’, as derived in Appendix A. Given
the strict exogeneity assumption on X, the quasi maximum likelihood (QML) estimate is
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Table 1: Bias directions

dependence team
space (λ0) time (γ0) dynamic spatial

+ + overestimates time unclear
- + overestimates time underestimates space

Note: Spatial and time dependence in the data generating process and bias of each research team – Team
Dynamic estimating a dynamic panel model, and Team Spatial estimating a static spatial panel model,
while the true model is a spatial dynamic panel model.

given by (Yu et al. 2008)

λTS ≈
σ2
Ỹ
−mỸ ,X̃

σ2
X̃,Ỹ

σ2
X̃

σ2
Ỹ
mW 2

Ỹ
+ 1

nT tr(W
2)−

σ2
X̃,Ỹ

σ2
X̃

(mỸ ,X̃)2
(5)

βTS ≈
(
σX̃,Ỹ

(
1−mX̃,Ỹ λTS

))
/σ2

X̃
, (6)

where mỸ ,X̃ = mX̃,Ỹ = Ỹ ′WX̃/Ỹ ′X̃ and mW 2

Ỹ
= Ỹ ′W 2Ỹ /Ỹ ′Ỹ . Denoting βTS as a

function of the estimate of the spatial parameter clarifies that whenever the spatial
parameter is biased, then so is βTS . Because inserting the reduced form DGP into
equations (5) and (6) as in an omitted variable analysis does not seem constructive,
another angle is pursued. To see the fault in neglecting the time dimension, consider the
QML estimator λ̂0QML of the full model:

λ0QML ≈
mỸ σ

2
Ỹ
−mX̃,Ỹ

σ2
Ỹ ,X̃

σ2
X̃

−mỸ ,Ỹ−

σ2
Ỹ ,Ỹ−1

σ2
Ỹ

σ2
Ỹ
mW 2

Ỹ
+ 1

nT tr(W
2)−

σ2
Ỹ ,X̃

σ2
X̃

(mỸ ,X̃)2 − (mỸ ,Ỹ−
)2
, (7)

where mỸ ,Ỹ−
= Ỹ ′WỸ−/Ỹ

′Ỹ− is defined accordingly. Note that the estimate β0
QML is

determined equally in the full model by inserting equation (7) into (6). If there is no
co-variation between contemporary and time-lagged values, the two estimates coincide.
If there is co-variation, estimates differ. While the difference in the nominator of eqs.
(5) and (7) depends on the sign of the dependence, it is negative in the denominator.
Hence, the sign of λTS − λ0QML is not entirely clear. Whether the estimate suffers from
upward or downward bias hinges on mỸ ,Ỹ−

, which reflects spatial correlation between the
contemporary and time-lagged values of the dependent variable which again only depends
on λ0. The direction of the bias is only clear in cases where the nominator increases.

Table 1 summarizes the findings so far. Because all analytical derivations are based on
the approximation An ≈ In+λ0Wn, the next section attempts to confirm the expectations
built here by means of a Monte Carlo simulation. In other words, the tale of the two
research teams will be told many times. Note that the approximation of the spatial
multiplier is not used at any other stage of the manuscript unless explicitly stated
otherwise.

4 Monte Carlo simulation

There is little reason to expect finding explosive spatial dynamic processes in economic
reality, at least on the regional level. Therefore, Monte Carlo simulations apply to stable
DGPs. The condition is that the absolute eigenvalues of Anγ0 need to be smaller than
unity (Lee, Yu 2010b). Applying the first-order approximation of the matrix inverse
to the reduced form of (1), the condition simplifies to 1 > |γ0|·(1 + |λ0|). Because it
is not feasible to cover the whole set of parameters that obey this restriction, a subset
of combinations as described in Table 2 is used. The underlying spatial structure is
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Table 2: Parameter combinations.

team λ0, step size γ0, step size combinations

dynamic [-0.60; 0.60], 0.15 [0; 0.80], 0.05 144
spatial [-0.60; 0.60], 0.05 [0; 0.80], 0.20 125

Note: Parameter combinations of the simulated data generating process as given in equation (1) used
for the corresponding calculation of the bias in parameters and marginal effects of the corresponding
research team. λ0 denotes spatial dependence, γ0 represents time dependence.

given by 35 Austrian NUTS 3 regions. A smaller number of regions is preferable from a
computational point of view, as the spatial weights matrix is increasing quadratically in
the number of regions. The spatial weights matrix is based on the road distance between
the central cities of each NUTS 3 region. Most frequently researchers use either inverse
distance measures or contiguity schemes. Given that user-friendly packages to calculate
distances accurately for a larger number of connections without cost exist for most
statistics programs, distance appears a more natural approach. Using a maximum-row
normalized spatial weights matrix based on these inverse distance measures, the DGP
is simulated for 30 periods according to equation (1). Pre-estimation periods ensure
independence of spurious existence or absence of spatial correlation through randomly
assigned start values (Lee, Yu 2010a). Periods 31 to 60 are handed to the research teams.

Team Dynamic uses a GMM procedure in the spirit of Arellano, Bover (1995) provided
in the xtabond2 package for Stata (Roodman 2006). As discussed above, Team Spatial
uses a QML approach based on Lee, Yu (2010a), provided in the xsmle package for Stata
(Belotti et al. 2017).

Xnt is strictly exogenous and the coefficient β0 is set to 0.75. As expected, βTD

is largely unaffected by omitting uncorrelated terms by virtue of its strict exogeneity.
As indicated by equation (6) the bias in the coefficient estimate of Team Spatial (βTS)
increases with the bias in λTS .

3

Since we are interested in the interplay of λ0 and γ0, simulations are run for different
parameter combinations, summarized in table 2. Each combination is simulated 500 times.
Hence, results are based on 134,500 runs. Due to the large amount of information, results
are summarized graphically in figures 1 and 2.

In general, the expectations formed in the former section find strong support. Simulation
results for Team Dynamic are in line with table 1. However, with negative spatial
dependence, the bias in estimating the autoregressive parameter is smaller compared to
cases with positive spatial dependence. Still, both situations show that the autoregressive
parameter is overestimated for every combination of λ0 and γ0, and high values of
autocorrelation are disproportionately vulnerable to neglecting the spatial dimension, as
the bias appears to explode at a range of λ0 ≈ 0.65. This is an alarming result given that
many dynamic processes in regional economics show high levels of autocorrelation.

Figure 2 describes the bias of Team Spatial in estimating λTS . As discussed in the
previous section, an underestimation in the case of negative spatial dependence (and
positive time dependence) could be expected, and finds support in the simulation results.
Notably, this overestimation in absolute terms pertains to the case of positive spatial
dependence, implying that the importance of space will always be overstated. As before,
this bias is larger the more important the omitted dimension is. In many (regional)
economic investigations the time dependence is large, and the results here make clear
that the importance of spillovers is likely to be overstated in cases where the ‘within-
dynamics’ are not accounted for. It has to be stressed that accounting for potentially
spatial heterogeneous (time-invariant) fixed effects does not help to counter this problem.
Anselin, Arribas-Bel (2013), looking into the ability of ‘spatial fixed effects’ to control
for spatial dependence in cross-sectional models, conclude that such spatial fixed effects

3Graphs included in the supplementary material. The do.-files for running the simulations in Stata
are provided as supplementary material. A shape-file containing Austrian NUTS3 regions can be found,
for example, at https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data
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Figure 1: Bias of Team Dynamic neglecting the spatial dimension. The vertical axis describes γTD − γ0,
the horizontal axis depicts γ0. Labels denote spatial dependence in the DGP (λ0).

Figure 2: Bias of Team Spatial neglecting the time dimension. The vertical axis describes λTS − λ0,
the horizontal axis depicts λ0. Labels denote spatial dependence in the DGP (γ0).

might only filter out spatial dependence if there is no distance decay, implying group-wise
dependencies. This argument may be extended to a panel set up, where such spatial-fixed
effects would fall in line with panel-fixed effects. Hence, unless the true DGP features
such group-wise structures, fixed effects do not suffice to account for spatial dependence.

Considerable effort has been given to (mis-)specification issues in spatial econometrics,
and also in order to find empirical strategies to identify the underlying date generating
processes (Florax et al. 2003, Anselin 2002, for example). As noted by Anselin (2010),
typically one cannot differentiate between spatial heterogeneity and spatial dependence,
an issue summarized as the inverse problem, closely related to Manski’s reflection problem.
Stressing these difficulties more rigorously, Gibbons, Overman (2012) suggest different
strategies. First, one should aim at exploiting quasi-experimental set ups to pinpoint
sources of exogenous variation. More importantly, the authors suggest using a reduced
form spatial lag of X (SLX) approach to capture spatial dependence. This is a strategy
that Team Dynamic might use, seeing that testing for spatial correlation in their residuals
will most likely reject the null of no correlation. Graph E.2 demonstrates that this strategy
does not relieve Team Dynamic of their bias completely, but attenuates it to a certain
degree. Certainly, the extent to which WX is a ‘good’ replacement of WY in a reduced
form depends on the explanatory power of the exogenous variable in determining Y .

In order to rule out that the results may be driven by the particular shape of Austria,
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with a large longitudinal stretch (from 9.6 to 16.95 degrees) compared to latitudinal (from
46.53 to 48.82 degrees), the exercise is repeated using German NUTS 2 regions (see Figure
E.1). Results of this robustness check are presented in Appendix E.

It can be expected that one will not find significant differences in marginal effects
when comparing two estimates where one is based on maximum-row normalization and
one is based on row-normalization, for example. While maximum-row normalization is
used for representative convenience, row-normalization is the much-preferred specification
in the literature. As LeSage, Pace (2014) argue, the correlation between spatial lag terms,
for example WnYnt, based on two such spatial weights matrices that are themselves based
on the same geographical information is shown to be very high. Therefore, it appears
unlikely that any of the results, especially in terms of marginal effects of the covariate,
differ due to the exact specification of Wn. Figure E.5 as well as Figure E.6 in Appendix
E present simulation results using a row-normalized version of Wn, showing that this
argument is indeed valid.

5 The marginal effect of the covariate

What if, instead of specifying the importance of time or space, the real interest lies in
eliciting the effect of the covariate X? It does not suffice to compare parameter estimates,
as both research teams assume different impact channels compared to the true DGP. In a
similar vain, LeSage, Pace (2018) or Debarsy et al. (2012) argue that marginal effects
should be the main target when comparing spatial econometric approaches in Monte
Carlo studies, mainly because they are non-linear combinations of estimated parameters
and often the main focus in applied research.4 In order to elicit the respective marginal
effects, differences in the assumed DGP need to be accounted for. In short, Team Spatial
will not be able to differentiate between short- and long-run effects, and Team Dynamic
will be unable to estimate indirect effects, the importance of feedback, and total effects.
Therefore, it appears most appropriate to compare marginal effects of both teams with
the corresponding correct ones.

The true marginal effects can be separated into direct, indirect, and total, and short-
run or contemporaneous versus long-run or equilibrium effects. Regarding the short-run,
they are based on the product of the coefficient and the spatial multiplier matrix:

y0
x =

∂Ynt
∂Xnt

= β0 (In − λ0Wn)
−1

(8)

The direct marginal effect is calculated as the average diagonal element of y0
x and the

indirect effect is the average row sum of y0
x excluding the diagonal element. The total

effect follows as the sum of direct and indirect effects (LeSage, Pace 2009). Long-run or
equilibrium effects are calculated accordingly using

y0∗
x =

β0
1− γ0

(In − φ0Wn)
−1
, (9)

where φ0 = λ0/(1− γ0).
As discussed above, Team Dynamic is able to estimate β0 without bias as long as

mX̃ is nil. Even though this assumption is unlikely to hold using observational data,
it represents a case in which the covariate is assigned (quasi-)randomly. Because the
team blocks out spatial interaction, it is only able to estimate a direct effect without
any potential feedback captured in the spatial multiplier. Hence, the marginal short-run
effect yTD

x is simply βTS . As such, one might expect an overestimation in the case of
negative spatial dependence, and an underestimation otherwise, and that Team Dynamic
is close to estimating the true direct effects as long as this feedback is small, implying
(1/n) · diag(y0

x)ln ≈ β0 using the approximation of the spatial multiplier. As noted above,
this approximation is more accurate for low to moderate values of λ0. Formally, the bias

4It has to be noted that the focus of the authors’ contribution is the precision of different estimation
techniques in estimating marginal effects of covariates, instead of parameter estimates that have been the
focus of earlier studies.
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Table 3: Bias of marginal direct short- and long-run effects of Team Dynamic.

γ0 0.2 0.4 0.6 0.8
λ0

PANEL A: DIRECT SHORT-RUN EFFECT
-0.3 -0.005 -0.006 -0.004 0.000
0 -0.008 -0.008 -0.007 -0.006
0.3 -0.005 -0.005 -0.006 0.018

PANEL B: DIRECT LONG-RUN EFFECT
-0.3 0.001 0.001 0.005 0.108
0 0.000 -0.001 0.000 0.021
0.3 0.000 0.004 0.001 0.726

Note: Bias of Team Dynamic relative to corresponding marginal effects in the true model. λ0 denotes
spatial dependence, γ0 represents time dependence.

of the marginal direct short-run effect is given by

yTD
x − 1

n
l′n
(
diag(y0

x)
)
ln = βTD − 1

n
ln

(
diag (I ′n − λ0Wn)

−1
)
lnβ0

= (βTD − β0)− β0
1

n

∞∑
k=1

l′ndiag(λ0Wn)
kln, (10)

where the first term (βTD − β0) may be labeled ‘coefficient bias’ and the latter term may
accordingly be called the ‘feedback bias’. Hence, even the coefficient estimate is unbiased,
the feedback bias will lead Team Dynamic to a false marginal effect. With respect to
long-run effects, the upward bias of Team Dynamic comes into play. Similarly to the
short-run, the bias in the long-run direct effect can be separated into a coefficient bias
and a feedback bias, where the autoregressive parameter enters directly. Formally, we get

yTD∗
x − 1

n
l′n
(
diag(y0∗

x )
)
ln =(

βTD

1− γTD
− β0

1− γ0

)
− β0

1− γ0

1

n

∞∑
k=1

l′ndiag(
λ0

1− γ0
Wn)

kln, (11)

where yTD∗
x = βTD/(1− γTD). In principle, the overestimation of the time-autoregressive

parameter might counteract the absence of feedback channels. Hence, it might be possible
that Team Dynamic gets close to the direct long-run effects, even though working with a
misspecified model. On the other hand, given that spatial dependence is large enough
such that the estimated autoregressive parameter is close to unity, unreasonably large or
even perverted effects might result.

Table 3 clarifies that marginal direct short-run effects can indeed be estimated fairly
well for moderate values of spatial dependence. Only for cases with positive spatial
dependence and high autocorrelation the relative bias surpasses the 1% mark. Panel B
displays the relative bias of marginal direct long-run effects, and shows a similar picture
as figure 1. Because the bias in the short-run coefficient is quite small, most of the bias
in the long-run coefficient is carried by the bias in the autoregressive parameter. As
mentioned before, this bias is larger the larger the autoregressive component and the
larger the spatial component. Indeed, the last column in panel B shows that the bias is
substantial for negative spatial dependence, and becomes even larger with λ0 > 0. In the
extreme, the direct long-run effect has an average upward bias of approximately 73%.

Team Spatial can estimate direct, indirect and total marginal effects, but cannot
differentiate between the short- and the long-run and will interpret marginal effects as
equilibrium, hence long-run, effects. The bias in either marginal effect is based on the
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Table 4: Bias of marginal direct and indirect long-run effects of Team Spatial

λ0 -0.5 -0.25 0 0.25 0.5
γ0

DIRECT LONG-RUN EFFECT
0 -0.038 -0.038 -0.039 -0.039 -0.039
0.6 -0.652 -0.642 -0.639 -0.641 -0.673

INDIRECT LONG-RUN EFFECT
0 0.026 0.065 -0.004 -0.089 -0.053
0.6 -0.749 -0.824 0.038 -0.644 -0.833

Note: Bias of Team Spatial relative to the corresponding marginal effects in the true model. Column
three (λ0 = 0) of indirect long-run effects measures absolute bias because the true effect is nil. λ0 denotes
spatial dependence, γ0 represents time dependence.

difference

yTS
x − y0∗

x = (In − λTSWn)
−1
βTS − β0

1− γ0
(In − φ0Wn)

−1

= (βTS − 1

1− γ0
β0) +

∞∑
k=1

W k
n

(
λkTSβTS − λk0/(1− γ0)

k+1β0
)
, (12)

showing three potential sources. These are differences between the estimated spatial
parameter λTS and the true one, differences between the estimated coefficient of the
covariate βTS and the true one, and the omission of the autoregressive component γ.
Equation (6) clarifies that a random assignment of the covariate such that mX̃,Ỹ is nil
will lead to an unbiased estimate βTS . Similar to the argument for Team Dynamic,
(quasi-) random assignment across space appears crucial. However, the omission of the
autoregressive component will not relieve Team Spatial of its inability to measure correct
direct, indirect, or total effects. The overestimation of the spatial parameter in absolute
terms increases in λ0 as shown in Figure 2, however, equation (12) shows that this might
off-set the bias to a certain degree. The bias can be expected to be small for low levels
of time dependence. Interestingly, LeSage, Pace (2018) mention that cases where the
estimates of β and λ are negatively correlated may mitigate the bias in the marginal
effect. On the other hand, they may also be aggravated (p.22). However, even with
unbiased estimation, both direct and indirect long-run effects are likely downwardly biased
because Team Spatial neglects the autoregressive multiplier (1/1(−γ0)) entirely, which
the overestimation of λTS is unlikely to make up for assuming typical parameter values.
Table 4 presents simulation results for a situation with no autoregressive component and
with a parameter γ0 of 0.6. In line with the results of figure 2, the bias is larger when λ0
is greater in absolute value.

To sum this section up, it has to be stressed that (quasi-) random assignment of the
covariate turns out to be a central requirement for both teams. Only then, Team Dynamic
will have a proper estimate of the direct short-run effect, but will likely overestimate the
long-run effect given that the autoregressive parameter is bound to be overestimated.
Team Spatial, even though possibly able to get a proper estimate of the coefficient of the
covariate, will suffer from neglecting the autoregressive multiplier (1/(1− γ0)).

6 Application: Cigarette demand

The openly available cigarette demand data used in Baltagi, Li (2004) for all landlocked
US states is a standard data set that is frequently used to illustrate issues in spatial,
dynamic, or spatial dynamic estimation methods, as in Kelejian, Piras (2017) or Debarsy
et al. (2012), who demonstrate the interpretation and calculation of marginal effects in
space-time models in the short- and long-run. It covers 30 years of cigarette sales per
capita, the average price per pack, and the average income per capita. The spatial weights
matrix used for this illustration is given by a queen-contiguity scheme. Thereby, cigarette
sales are hypothesized to depend on the average price P per pack, the average price in

REGION : Volume 8, Number 1, 2021



164 L.B. Fischer

neighboring states, and the average income as exogenous determinants (Debarsy et al.
2012, Elhorst 2014, Kelejian, Piras 2017). Referring to the tale in Section 3, table (5)
presents the estimation results of Team Dynamic, Team Spatial, and of a ‘full’ specification
according to the DGP assumed in equation (1). The estimation of the full model is carried
out using the estimator of Yu et al. (2008), which has already been used in previous
Sections. The fixed effects specification can be expected to work well given that the data is
available for the years 1963 to 1992. Recently, Jin et al. (2020) propose a quasi-maximum
likelihood estimator in first differences for panels with a short time horizon that would
potentially be vulnerable to the incidental parameter problem, which would otherwise
represent a viable alternative estimator of the full model.

The observations that can be drawn are in line with the expectations formed above.
With a large autoregressive component, the spatial lag is highly overestimated when the
former component is neglected, as a comparison of columns three (‘Team Spatial’) and four
(‘full model’) shows. Indeed, while remaining highly significant in the full specification,
Team Spatial is bound to overestimate the spatial lag parameter fourfold. Further,
with a small spatial component, the potential bias in estimating the time component is
small. Both estimators of Team Dynamic are very close to the full model in terms of the
autoregressive parameter.

With respect to the covariates, parameter estimates themselves are not meaningful.
Rather, marginal effects as discussed in section 5 need to be compared. In order to
illustrate this comparison, estimated marginal effects of the average price are presented in
panel 2 of Table 5. For Team Dynamic, it can be seen that both short-run and long-run
(direct) effects are similar to those of the fully specified model. This is unsurprising
given that the spatial component is small such that the autoregressive parameter can be
estimated fairly well and the spatial multiplier is small. Because Team Spatial misses
the autoregressive component in calculating long-run effects, neither the direct nor the
indirect effect are similar to those in the full specification and are underestimated quite
substantially. The indirect effect even shows the opposite sign, pointing towards the
structural misspecification.

Regarding the observations made above, it seems quite unlikely that mX̃,Ỹ is zero in
this setting such that the bias of the spatial-autoregressive parameter is transferred to
the coefficient of the average price per pack. Team Spatial interprets marginal effects as
long-run elasticities by construction and consequently underestimates them.

Table C.1 in Appendix (C) discusses some further possible modeling choices of both
research teams. Team Spatial may argue that time-fixed effects already capture the
time dimension. Given that state-fixed effects account for differences in levels, time-fixed
effects would ‘catch’ average dynamics. Compared to the column (3) in table 5, not
including time-fixed effects indeed induces a larger estimate of the spatial lag parameter,
as column (1) illustrates. On the other hand, Team Dynamic might follow up on the
argument of Gibbons, Overman (2012) and use a reduced-form spatial lag of X model.
As shown in column (2), this approach appears to work reasonably well in this case, as
both the autoregressive and the coefficient of the price are almost identical to those in the
full specification. Note that the SLX specification allows calculating direct and indirect
effects, albeit assuming local spillovers that do not account for potential feedback loops.
Alternatively, Team Dynamic might simply run a dynamic spatial error model (SEM)
as proposed by Su, Yang (2015).5 As discussed in LeSage, Pace (2009), if covariates are
the source of spatial heterogeneity, the corresponding dynamic SEM can be rewritten as
a dynamic spatial Durbin model, in which case the results are naturally very similar to
those reported in column (4) in Table 5.6

7 Conclusions

In a time when geo-referenced data becomes more available and stretches across longer
time periods, researchers are able to account for dependencies in both dimensions, space
and time. The aim of this study is to give insights to the problems one can expect if

5Unfortunately, this estimator is not implemented in statistical software.
6The author thanks an anonymous reviewer for these remarks.
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Table 5: Empirical illustration; dependent variable: log consumption per capita

Team Dynamic Team Spatial full model
(1) fixed effects (2) bias corrected (3) QML (4) QML

Panel 1: estimated parameters

time lag 0.832*** 0.862*** 0.867***
(32.60) (58.55) (24.63)

spatial lag 0.210*** 0.049***
(9.24) (2.88)

price -0.296*** -0.277*** -1.001*** -0.264***
(-8.50) (-11.96) (-9.05) (-4.95)

income 0.114*** 0.101*** 0.467*** 0.090***
(3.06) (3.81) (4.17) (3.73)

W · price 0.084 0.086** 0.096 0.159**
(1.64) (2.48) (0.59) (2.17)

R2 0.86 0.68 0.90

Panel 2: marginal effect of price

short run:
direct -0.296*** -0.277*** -0.262***

(72.25) (143.04) (146.23)
indirect 0.152***

(12.81)
total -0.110**

(5.80)
long run:
direct -1.765*** -2.004*** -1.006*** -1.942***

(39.80) (88.82) (848.22) (129.16)
indirect -0.144** 0.685

(4.24) (2.61)
total -1.150*** -1.257**

(197.25) (6.39)

Observations: 1334 (N=46, T=29). Column ‘fixed effects’ follows a least squares dummy variable
estimation. Column ‘bias corrected’ indicates the dynamic panel bias correction advocated by Kiviet
(1995). Columns ‘QML’ and ‘QML full’ present results of a (dynamic) fixed effects spatial autoregressive
model as outlined in Yu et al. (2008), where the latter applies a bias correction. Robust t-statistics in
parentheses in panel ‘estimated parameters’. Test statistics in panel ‘marginal effects’ are all of Wald-type
for matters of comparability. All specifications include year-fixed effects. Data can be downloaded, for
example, at spatial-panels.com/software. All variables in logs. * p < 0.05, ** p < 0.01, *** p < 0.001

either one dimension is neglected. In order to illustrate the issue at hand, a tale of two
research teams is told, each one being agnostic of one dimension. The results show that
the neglected dimension projects onto the other, thereby biasing coefficient estimates,
and subsequently tests, marginal effects, and predictions. Neither purely dynamic nor
purely (static) spatial estimation approaches are able to estimate ‘their side’ of the data
appropriately. Analytical approximations combined with simulation results show that the
direction of these biases in spatial- and time-autoregressive parameters can be determined.
Even though signs are correctly estimated, the importance of the remaining dimension
is overstated. Investigations of spatial dynamic processes that neglect space are likely
to report slower convergence speeds, are more likely to ‘find’ unit roots when in fact
processes are stable, and will show severely biased long-run effects. These results are
amplified for positive spatial dependence. These biases further work their way through to
marginal effects of covariates, which are shown to be equally affected.

Likewise, estimates of spatial dependence without considering time can be severely
biased upwards in absolute terms. In these cases, the role of spillovers is likely to be
overestimated. Because partial adjustment is ruled out when the time dimension is denied,
marginal effects are bound to be underestimated given that autocorrelation is large. Both
cases offer a wide range of research questions that may be reassessed considering these
pitfalls. A short application to real data supports these findings. While the sizes of
simulated biases are conditional on the spatial structure and weights matrix, the signs
are robust. Figures E.3 and E.4 in Appendix E display qualitatively identical simulation
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results of Team Dynamic and Team Spatial using German NUTS 2 regions as underlying
spatial structure. Further, Figures E.5 and E.6 clarify that the result is not dependent on
the normalization of the spatial weights matrix.

In terms of methodological recommendations, several aspects are worth noting. First
of all, practitioners should have sound theoretical foundations that would exclude either
partial adjustment or spatial interaction. More often, practitioners have used dynamic
rather than spatial models. In that sense, tests for spatial residual correlation should be
done routinely in regional and urban economics applications to check for the presence of
any kind of spatial interaction. Of course, this also holds for non-dynamic applications.
Likewise, spatial panel applications should routinely check for autoregressive residuals by
the same argument. Coming back to the argument of Gibbons, Overman (2012) and the
reflection issue, a reduced form spatial dynamic approach might be preferred. As in most
issues regarding identification, sources of exogenous variation are most crucial. In the
words of the tale of Team Dynamic and Team Spatial, as so often, it would be beneficial
for all to put their heads together.
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Appendix

A Approximation of biases

Team Dynamic runs two-stage least squares on first differences. The bias is determined
by inserting the reduced form DGP for ȳ:

ϕTD − ϕ0 =
(
Γ̃′Γ̃
)−1

Γ̃′
[
(InT − λ0W )

−1
(Γ̃ϕ0 + Ṽ )

]
− ϕ0 (A.1)

This is the point where the approximation of the spatial multiplier enters. Multiplying
out and exogenous residual terms yields the desired result of equation (3). Under strict

exogeneity and assuming well-behaved innovations AnT = (InT − λ0(IT ⊗Wn))
−1 ≈

InT + λ0W as well as PZ = InT ,

ϕTD − ϕ0 = λ0

(
Γ̃′Γ̃
)−1

Γ̃′W Γ̃ϕ0 (A.2)

With K right-hand side variables (k = 1 indicating the time lag, k = 2 the first
exogenous variable, and so on), one gets

Q ≡
(
Γ̃′Γ̃
)−1 [

Γ̃′Γ̃⊙M
]
=


∑K

j=1 η1jσj1mj1 . . .
∑K

j=1 η1jσjkmjk∑K
j=1 η2jσj2mj2 . . .

∑K
j=1 η2jσjkmjk

...
...

...∑K
j=1 ηKjσj1mj1 . . .

∑K
j=1 ηKjσjKmjK

 (A.3)

where σij (ηij) is the row i, column j element in Γ̃′Γ̃ ((Γ̃′Γ̃)−1). Hence, the approximated
bias is given as

plim(ϕ̂− ϕ0) ≈ λ0Qϕ0 = λ0


∑K

k=1 ϕ0,k
∑K

j=1 η1jσjkmjk

...∑K
k=1 ϕ0,k

∑K
j=1 ηKjσjkmjk

 (A.4)

Team Spatial estimates a spatial autoregressive model by QML. First consider a correctly
specified model with first order conditions (Yu et al. 2008)

Γ̃′Ṽ = 0 (A.5)

Ỹ ′WṼ − tr(G) = 0 (A.6)

Ṽ ′Ṽ = 0, (A.7)

where Γ̃ =
(
Ỹ−, X̃

)
, Ṽ = (I −λ0W )Ỹ − Γ̃δ0 = Ỹ −λ0WỸ − Γ̃δ0, G =W (InT −λ0W )−1,

and δ0 =
[
γ0 β0

]′
. These conditions follow from the concentrated (within) likelihood

function indicated by a tilde. The system of equations can easily be solved analytically
by using the approximation of the spatial multiplier matrix in calculating the trace of G.

tr(G) = tr(W (I − λ0W )
−1

) ≈ tr(W (I + λ0W )) ≈ λ0tr(W
2). (A.8)

Condition (A.7) yields and estimate of the error variance and is not important for the
approximation of the bias. The problem thus boils down to solving the linear equation
system given by conditions (A.5) and (A.6): Ỹ ′

−WỸ Ỹ ′
−Ỹ− Ỹ ′

−X̃

X̃ ′WỸ X̃ ′Ỹ− X̃ ′X̃

Ỹ ′W 2Ỹ + tr(W 2) Ỹ ′WỸ− Ỹ ′WX̃

λ̂γ̂
β̂

 ≈

 Ỹ ′
−Ỹ

X̃ ′Ỹ

Ỹ ′WỸ

 (A.9)

Since all variables are demeaned, one can rewrite the problem in terms of (co-)variances,
reflecting the notion of variance decomposition. According to the DGP defined above,
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plim(X ′Y−) = 0. The resulting estimates are thus

λ̂0QML ≈
mỸ σ

2
Ỹ
−mX̃,Ỹ

σ2
Ỹ ,X̃

σ2
X̃

−mỸ ,Ỹ−

σ2
Ỹ ,Ỹ−1

σ2
Ỹ

σ2
Ỹ
mW 2

Ỹ
+ 1

nT tr(W
2)−

σ2
Ỹ ,X̃

σ2
X̃

(mỸ ,X̃)2 − (mỸ ,Ỹ−
)2

(A.10)

β0
QML ≈

σỸ ,X̃

(
1− λ̂0QMLmX̃,Ỹ

)
σ2
X̃

(A.11)

γ0QML =
σỸ ,Ỹ−1

(
1− λ̂0QMLmỸ ,Ỹ−

)
σ2
Ỹ

(A.12)

Team Spatial uses the same QML estimator under the assumption that γ0 = 0. Hence
the system of equations is given by[

X̃ ′WỸ X̃ ′X̃

Ỹ ′W 2Ỹ + tr(W 2) Ỹ ′WX̃

] [
λ0

β0

]
≈
[
X̃ ′Ỹ

Ỹ ′WỸ

]
(A.13)

The solution follows immediately as

λTS =
σ2
Ỹ
mỸ −mỸ ,X̃

σ2
X̃,Ỹ

σ2
X̃

σ2
Ỹ
mW 2

Ỹ
+ 1

nT tr(W
2)−

σ2
X̃,Ỹ

σ2
X̃

(mỸ ,X̃)2
(A.14)

βTS =
σX̃,Ỹ

(
1−mX̃,Ỹ λTS

)
σ2
X̃

(A.15)

The result in equation (5) follows for σ2
Ỹ
= 1.

B The sign of Moran’s I

The MA(∞) representation of the DPG is given by

Ynt = γt0A
t
nYn0 +

t∑
τ=0

γτ0A
τ+1
n (Xn,t−τβ0 + Vn,t−τ ) (B.1)

For γ0 < 1, the first term will vanish. Moran’s I of the sample is the sum of the yearly
values (divided by the square sum of the sample). For period t :

Y ′
ntWnYnt =

(
t∑

τ=0

γτ0A
τ+1
n (Xn,t−τβ0 + Vn,t−τ )

)′

Wn(
t∑

τ=0

γτ0A
τ+1
n (Xn,t−τβ0 + Vn,t−τ )

)
(B.2)

assuming that cross-time values are nil we can rewrite

Y ′
ntWnYnt =

t∑
τ=0

γ2τ0

(
β2
0X

′
n,t−τ

(
Aτ+1

n

)′
WnA

τ+1
n Xn,t−τ

+V ′
n,t−τ

(
Aτ+1

n

)′
WnA

τ+1
n Vn,t−τ

)
=

t∑
τ=0

γ2τ0 Mτ (B.3)

Hence, plim(Y ′
ntWnYnt) = plim

∑t
τ=0 γ

2τ
0 Mτ and γ0 and β0 cannot influence the sign.

Using the approximation of the spatial multiplier matrices for the DGPs of Y and X, for

REGION : Volume 8, Number 1, 2021



L.B. Fischer 171

Figure B.1: Trace of powers of the spatial weights matrix (left) and simulated Moran’s I values (right).

τ = 0 it follows:

M0 ≈ β2
0

[
σεα0

(
2tr(W 2

n) + α0tr(W
3
n)
)
+

+ 2λ0
(
σ2
εα0

(
2tr(W 3

n) + α0tr(W
4
n)
)
+ σ2

εtr(W
2
n)
)

+ λ20
(
σ2
εα0

(
2tr(W 4

n) + α0tr(W
5
n)
)
+ σ2

εtr(W
3
n)
)]

+ λ0σ
2
(
2tr(W2) + λ0tr(W

3
n)
)

(B.4)

Evidently, it is difficult to get more insight by investigating the terms Mτ in
approximation. For α0 = 0, the term is greatly simplified to

M0 ≈ λ0σ
2
εβ

2
0

(
2tr(W 2

n) + λ0tr(W
3
n)
)
+ λ0σ

2
(
2tr(W 2

n) + λ0tr(W
3
n)
)

(B.5)

The symmetry of Wn implies tr(W k
n ) =

∑n
i=1 e

k
i , where ei is an eigenvalue of Wn. Since

all eigenvalues are within the unit circle, max
k ϵ N

tr(W k
n ) = tr(W 2

n) (figure B.1, left). Even

though one might assume that M0 dominates and that by 2tr(W 2
n) + λ0tr(W

3) > 0 the
sign is determined by λ0, figure B.1 (right) confirms that indeed the sign of λ0 determines
the sign of Moran’s I.
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C Cigarette Demand: Further Specifications

Table C.1: Empirical illustration – Alternative specifications; dependent variable: log
consumption

Team Spatial Team Dynamic full model
(1) LSDV (2) No Space (3) DSLX (4) DSEM (5)

Panel 1: estimated parameters

time lag 0.858** 0.861*** 0.865*** 0.867***
(57.33) (58.42) (65.04) (24.63)

spatial lag 0.321*** 0.049***
(11.06) (2.88)

price -0.938*** -0.270*** -0.278*** -0.266*** -0.264***
(-24.02) (-11.72) (-12.20) (-13.19) (-4.95)

income 0.348*** 0.092*** 0.109** 0.100*** 0.090***
(17.85) (3.55) (3.15) (4.16) (3.73)

W · price 0.476*** 0.083** 0.170** 0.159**
(10.33) (2.34) (3.66) (2.17)

W · income -0.020 -0.022
(-0.49) (-0.87)

spatial time lag -0.015
(-0.29)

Panel 2: marginal effect of log price

short-run direct -0.270*** -0.278*** -0.262*** -0.262***
(-11.72) (-12.20) (-11.48) (-12.09)

short-run indirect 0.083** 0.160*** 0.152***
(2.34) (3.49) (12.81)

long-run direct -0.965*** -1.900*** -1.992*** -1.931*** -1.942***
(-22.91) (9.35) (9.64) (-9.59) (-11.36)

long-run indirect -0.420*** 0.594** 0.610 0.685
(-7.22) (2.32) (0.98) (1.62)

time-fixed effects No Yes Yes Yes Yes

Observations: 1334 (N=46, T=29). Robust t-statistics in parentheses in both panels. Test statistics in
panel ‘marginal effects’ are all of Wald-type for matters of comparability. All specifications except column
(1) include year-fixed effects. Column (1) estimates a least squares dummy variable model, outputs in
columns (2) and (3) based on dynamic panel bias correction advocated by Kiviet (1995). Column (4)
would ideally be estimated in the line of Su, Yang (2015), which is unfortunately not implemented in any
(known to the author) statistics program. Results in column(4) replicated from Elhorst (2014) (p.114).
Columns (4) and (5) use the estimator proposed by Yu et al. (2008). All variables in logs. * p < 0.05, **
p < 0.01, *** p < 0.001
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D Spatial dynamic covariate

Let Xnt be generated as

Xnt = ψ0Xn,t−1 + α0WnXnt + εnt = (In − α0Wn)
−1

(ψ0Xn,t−1 + εnt) , (D.1)

where εnt are independently and identically distributed random draws, α0 represents
spatial dependence, and parameter ψ0 represents autocorrelation. Because all derivations
above are conditional on within-transformed data, it is reasonable to assume a DGP
like this for the transformed covariate. The assumption that there is a common spatial
weights matrix Wn that reflects spatial linkages is most frequently used, in applied as well
as theoretical work. In this section, we stick to this tradition. In principle one would be
able to define different weight matrices for the spatial lag of the dependent variable and
the DGP of the covariate. Besides having to bear additional notational burden of different
weight matrices, there is very good reason to rely on one representation of space. As
LeSage, Pace (2014) argue, spatial weights matrices are likely highly positively correlated.

Similar the equation (B.1), one can characterize the DGP of the covariate equally as

Xnt = ψt
0A

t
x,nXn,0 +

t∑
τ=0

ψτ
0A

τ+1
x,n εn,t−τ (D.2)

Ax,n = (In − α0Wn)
−1

implying that the state of the covariate depends on its initial or start values, the start
values of all other units, and all past residual terms, own and of all other units. For
ψ0 < 1, the first term will disappear. This gives rise to the same result as in Appendix B,
stating that, indeed, α0 governs the sign of spatial correlation of X.

Two additional parameters and the reduced form DGP of X greatly increase the
difficulty in deriving approximations of the bias of the teams. For example, the approximated
bias of Team Dynamic, as given in equation (A.4), in a set up with one covariate is given
by

plim(ϕ̂− ϕ0) ≈ λ0Qϕ0 = λ0

γ0 (ηỸ−
σ2
Ỹ−
mỸ−

)
+ β0

(
ηX̃,Ỹ−

σX̃,Ỹ−
mX̃,Ỹ−

)
γ0

(
ηX̃,Ỹ−

σX̃,Ỹ−
mX̃,Ỹ−

)
+ β0

(
ηX̃σ

2
X̃
mX̃

)  (D.3)

Whereas term mX̃,Ỹ−
can be considered nil in the case of random assignment, this is

not the case in this setting, as all random draws εn,0 to εn,t−1 affect both X̃ as well as

Ỹ−. This implies further that X̃nt and Ỹn,t−1 are in fact collinear, rendering ηX̃,Ỹ−
and

σX̃,Ỹ−
nonzero. Hence, it appears quite unpromising to pursue further approximations,

as potentially all parameters (γ0, λ0, α0, ψ0, β0) may play a direct or indirect role in
determining the bias in either estimate of Team Dynamic. The same argument can be
applied to the approximated bias of Team Spatial.

In cases where ψ0 = 0, equations (1) and (D.1) imply that the off-diagonal values of
M (mi,̸=i) tend to zero as long as innovations ε are not autocorrelated. Formally, the
condition is given by

plim

([
(I − λ0W )

−1
(I − α0W )

−1
εn,t−1

]′
(I − α0W )

−1
εnt

)
= 0, (D.4)

which holds by the i.i.d. assumption.
Simulation results of several possible cases are presented in the tables below, with

results as discussed in the following two paragraphs.

Autoregressive Parameters The main conclusions remain for both teams. Team
Dynamic will overestimate γ0, and more so the larger spatial dependence (λ0) in absolute
value. Comparing positive and negative values of spatial dependence, the bias is smaller
at the latter. For lower values of γ0, autocorrelation in the covariate (ψ0 > 0) appears to
aggravate this bias, and also spatial depedence in the covariate (α0) has a positive impact
on the bias. This is shown in in Table D.2.
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Regarding Team Spatial, Table D.5 reveals that the bias in estimating λ0 is, as above,
increasing in γ0 in absolute terms conditional on α0 and ψ0. For a given parameterization
of the DGP of Ynt, interesting insights appear, however. First, the bias in increasing
in ψ0. Thus, it is possible that the sign of the bias may even change sign, even though
this possibility seems confined to cases where the DGP of the dependent variable itself
is highly autocorrelated. Similar to Team Dynamic, spatial dependence in the covariate
seems to positively affect this bias. It has to be stressed, however, that the main effect is
determined by λ0 and γ0 for both teams.

Marginal effect of the covariate As in the main text, Team Dynamic is able
to measure direct long- and short-run effects without feedback, while Team Spatial
interprets marginal effects as equilibrium effects without considering the time dimension.
Because team dynamic misses feedback effects, it could be expected that the short-
run marginal effect is more prone to underestimation the larger the potential for such
feedbacks, indicated by large values of λ0. This is indeed the case, and seems to be more
pronounced the larger the autocorrelation (ψ0) in the covariate. However, results show
a slight overestimation for ψ0 = 0 at high values of autocorrelation and positive spatial
dependence in the dependent variable, as shown in Table D.3. The effect of α0 seems
limited, but suggest a shift of the bias, where the direction is given by the sign of λ0

As in the main text, the balance between missing feedbacks and an overestimation
of the auotregressive parameter plays a crucial role in the long-run. Table D.4 presents
the result for varying parameter constellations in the DGP of the covariate, and shows
that this interplay is influenced significantly. For example, while the long-run direct
effect is slightly underestimated for γ0 = 0.4, λ0 = 0.6, α0 = −0.3, it turns out to be
overestimated when α0 is nil or positive. Autocorrelation in the covariate aggrevates the
bias in either case.

Team spatial is most likely to underestimate equilibrium effects of the covariate due
to the omission of the time dimension, and this finds strong support in Table D.6 and
Table D.7. In the case of direct marginal effects in Table D.6, one can conclude that
spatial correlation in the covariate has no visible effect on the bias, while autocorrelation
ψ0 > 0 of the covariate tends to dampen this bias mildly. Regarding indirect effects, as
presented in Table D.7, this result remains unchanged with the exception that the sign
of α0 determines the sign of the bias when the DGP of the dependent variable in fact
features no spatial dependence.
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Table D.2: Bias of Team Dynamic – autoregressive parameter.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3

γ0 λ0

0.00 -0.60 0.000 0.001 0.000 0.006 0.002 0.000 0.013 0.007 0.004
0.00 -0.30 0.001 -0.002 0.001 0.003 0.001 0.001 0.003 0.003 -0.001
0.00 0.00 0.000 0.000 -0.001 0.000 0.001 0.000 0.000 0.000 0.000
0.00 0.30 0.000 0.000 -0.001 -0.001 0.002 0.001 0.002 0.002 0.006
0.00 0.60 0.002 0.002 0.000 0.001 0.004 0.009 0.001 0.008 0.025

0.40 -0.60 0.021 0.016 0.011 0.027 0.020 0.016 0.049 0.028 0.018
0.40 -0.30 0.006 0.001 0.000 0.008 0.004 0.002 0.013 0.005 0.000
0.40 0.00 0.000 0.001 -0.001 0.000 0.001 0.000 0.001 -0.002 0.000
0.40 0.30 -0.001 0.003 0.004 0.001 0.006 0.007 0.002 0.010 0.017
0.40 0.60 0.020 0.027 0.035 0.021 0.032 0.051 0.029 0.049 0.098

0.80 -0.30 0.031 0.032 0.031 0.033 0.029 0.027 0.045 0.027 0.019
0.80 0.00 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001
0.80 0.30 0.140 0.144 0.141 0.132 0.121 0.131 0.119 0.113 0.117

Note: Bias of the estimated autoregressive parameter γTD of Team Dynamic relative to the corresponding
parameter in the true model. λ0 and γ0 represent spatial and time dependence in the DPG of the
dependent variable Y, α0 and ψ0 represent spatial and time dependence in the DPG of the covariate X.
Bias in absolute terms whenever γ0 = 0.

Table D.3: Bias of Team Dynamic – direct short-run marginal effect of covariate.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
γ0 λ0

0.00 -0.60 0.010 0.000 -0.010 0.011 0.000 -0.012 0.009 -0.002 -0.020
0.00 -0.30 0.005 0.000 -0.003 0.007 0.001 -0.008 0.003 0.000 -0.007
0.00 0.00 0.000 0.001 0.003 -0.001 0.000 0.000 0.000 0.000 0.001
0.00 0.30 -0.003 0.000 0.005 -0.004 -0.001 0.008 -0.008 -0.002 0.005
0.00 0.60 -0.013 -0.001 0.018 -0.014 -0.002 0.016 -0.015 -0.005 0.009

0.40 -0.60 0.012 -0.001 -0.010 0.007 -0.003 -0.018 -0.005 -0.013 -0.028
0.40 -0.30 0.005 0.000 -0.004 0.003 0.000 -0.006 0.004 -0.001 -0.009
0.40 0.00 -0.001 0.001 -0.001 -0.002 -0.002 0.001 0.000 0.000 0.000
0.40 0.30 -0.004 -0.001 0.006 -0.006 -0.001 0.005 -0.011 -0.005 0.006
0.40 0.60 -0.011 0.001 0.016 -0.018 -0.005 0.008 -0.032 -0.024 -0.022

0.80 -0.30 0.007 0.006 0.001 0.005 -0.001 -0.009 -0.014 -0.014 -0.027
0.80 0.00 0.002 0.000 0.002 0.001 -0.001 0.002 -0.002 0.001 0.001
0.80 0.30 0.020 0.022 0.028 -0.019 -0.014 -0.007 -0.082 -0.068 -0.057

Note: Bias of the estimated direct short-run effect of Team Dynamic relative to the one in the true model.
λ0 and γ0 represent spatial and time dependence in the DPG of the dependent variable Y, α0 and ψ0

represent spatial and time dependence in the DPG of the covariate X.

REGION : Volume 8, Number 1, 2021



176 L.B. Fischer

Table D.4: Bias of Team Dynamic – Long-run marginal effect of covariate.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
γ0 λ0

0.00 -0.60 0.011 0.002 -0.009 0.017 0.002 -0.012 0.022 0.005 -0.016
0.00 -0.30 0.006 -0.001 -0.002 0.010 0.002 -0.007 0.006 0.003 -0.007
0.00 0.00 0.000 0.001 0.002 0.000 0.001 0.000 -0.001 0.001 0.001
0.00 0.30 -0.003 0.000 0.003 -0.005 0.001 0.010 -0.007 0.000 0.011
0.00 0.60 -0.011 0.001 0.018 -0.013 0.003 0.025 -0.014 0.003 0.036

0.40 -0.60 0.028 0.006 -0.012 0.033 0.010 -0.012 0.062 0.014 -0.019
0.40 -0.30 0.011 -0.001 -0.007 0.013 0.003 -0.006 0.022 0.004 -0.013
0.40 0.00 0.000 0.002 -0.002 -0.001 0.000 0.001 0.002 -0.002 0.001
0.40 0.30 -0.009 0.000 0.009 -0.010 0.004 0.012 -0.012 0.008 0.031
0.40 0.60 -0.011 0.013 0.044 -0.017 0.014 0.065 -0.017 0.029 0.138

0.80 -0.30 0.099 0.106 0.101 0.100 0.069 0.043 0.170 0.024 -0.035
0.80 0.00 0.017 0.008 0.017 0.006 0.010 0.011 0.005 0.009 0.005
0.80 0.30 0.691 0.655 1.506 0.008 -0.107 0.054 -0.507 -0.511 -0.460

Note: Bias of the estimated direct long-run effect of Team Dynamic relative to the one in the true model.
λ0 and γ0 represent spatial and time dependence in the DPG of the dependent variable Y, α0 and ψ0

represent spatial and time dependence in the DPG of the covariate X.

Table D.5: Bias of Team Spatial – spatial-autoregressive parameter.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
γ0 λ0

0.00 -0.60 0.018 -0.003 0.006 -0.006 0.007 0.013 0.005 0.003 0.003
0.00 -0.30 0.003 -0.004 -0.001 -0.007 0.000 0.007 -0.005 -0.001 -0.007
0.00 0.00 -0.006 0.008 -0.008 -0.006 -0.007 0.004 0.002 -0.003 -0.005
0.00 0.30 -0.003 -0.008 -0.006 -0.011 0.000 -0.006 -0.003 -0.001 -0.003
0.00 0.60 -0.010 -0.005 -0.008 -0.006 -0.003 -0.008 -0.015 -0.006 -0.011

0.40 -0.60 -0.194 -0.153 -0.094 -0.267 -0.202 -0.133 -0.363 -0.260 -0.149
0.40 -0.30 -0.114 -0.062 -0.026 -0.173 -0.102 -0.007 -0.251 -0.122 -0.012
0.40 0.00 -0.047 -0.006 0.051 -0.088 -0.003 0.079 -0.129 -0.010 0.113
0.40 0.30 0.015 0.069 0.116 0.021 0.079 0.167 0.002 0.121 0.247
0.40 0.60 0.119 0.167 0.203 0.147 0.209 0.271 0.182 0.261 0.367

0.80 -0.30 -0.737 -0.708 -0.648 -0.786 -0.653 -0.583 -0.928 -0.670 -0.384
0.80 0.00 -0.199 -0.063 0.140 -0.259 -0.013 0.241 -0.399 -0.015 0.405
0.80 0.30 0.981 1.004 1.006 0.956 0.922 0.985 0.914 0.931 0.964

Note: Bias of the estimated spatial-autoregressive parameter λTS of Team Dynamic relative to the
corresponding parameter in the true model. λ0 and γ0 represent spatial and time dependence in the
DPG of the dependent variable Y, α0 and ψ0 represent spatial and time dependence in the DPG of the
covariate X. Bias in absolute terms whenever λ0 = 0.
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Table D.6: Bias of Team Spatial – marginal direct long-run effect.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
γ0 λ0

0.00 -0.60 0.000 0.000 0.000 0.000 0.000 -0.001 0.001 0.002 -0.001
0.00 -0.30 0.000 0.001 0.002 0.002 0.000 -0.002 -0.002 0.001 0.001
0.00 0.00 0.000 0.000 0.002 -0.001 0.000 0.000 -0.001 0.000 0.000
0.00 0.30 0.002 0.000 -0.001 0.001 -0.001 0.002 -0.001 -0.001 0.000
0.00 0.60 -0.003 -0.003 0.003 -0.003 -0.001 0.000 0.000 -0.001 -0.002

0.40 -0.60 -0.426 -0.425 -0.424 -0.351 -0.350 -0.349 -0.249 -0.250 -0.251
0.40 -0.30 -0.416 -0.416 -0.415 -0.343 -0.341 -0.339 -0.240 -0.240 -0.244
0.40 0.00 -0.415 -0.414 -0.414 -0.338 -0.340 -0.340 -0.240 -0.242 -0.241
0.40 0.30 -0.416 -0.415 -0.417 -0.341 -0.340 -0.341 -0.244 -0.242 -0.243
0.40 0.60 -0.431 -0.430 -0.431 -0.356 -0.355 -0.355 -0.258 -0.258 -0.254

0.80 -0.30 -0.842 -0.841 -0.839 -0.801 -0.800 -0.796 -0.720 -0.721 -0.720
0.80 0.00 -0.824 -0.823 -0.823 -0.778 -0.777 -0.778 -0.692 -0.689 -0.689
0.80 0.30 -0.975 -0.975 -0.975 -0.969 -0.970 -0.970 -0.957 -0.958 -0.959

Note: Bias of the estimated direct long-run effect of Team Spatial relative to the one in the true model.
λ0 and γ0 represent spatial and time dependence in the DPG of the dependent variable Y, α0 and ψ0

represent spatial and time dependence in the DPG of the covariate X.

Table D.7: Bias of Team Spatial – marginal indirect long-run effect.

ψ0 → 0 0.3 0.6
α0 → -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
γ0 λ0

0.00 -0.60 -0.027 0.005 -0.009 0.009 -0.011 -0.021 -0.006 -0.002 -0.005
0.00 -0.30 -0.011 0.012 0.004 0.024 0.000 -0.022 0.012 0.006 0.022
0.00 0.00 -0.001 0.002 -0.002 -0.001 -0.001 0.001 0.000 -0.001 -0.001
0.00 0.30 -0.008 -0.029 -0.024 -0.040 0.000 -0.021 -0.012 -0.004 -0.012
0.00 0.60 -0.025 -0.014 -0.014 -0.017 -0.008 -0.017 -0.033 -0.013 -0.026

0.40 -0.60 -0.534 -0.556 -0.585 -0.430 -0.468 -0.509 -0.274 -0.346 -0.423
0.40 -0.30 -0.507 -0.565 -0.604 -0.375 -0.459 -0.577 -0.172 -0.348 -0.508
0.40 0.00 -0.009 -0.001 0.010 -0.019 -0.001 0.018 -0.032 -0.003 0.030
0.40 0.30 -0.661 -0.592 -0.532 -0.609 -0.525 -0.394 -0.581 -0.384 -0.153
0.40 0.60 -0.672 -0.639 -0.614 -0.608 -0.557 -0.500 -0.517 -0.436 -0.302

0.80 -0.30 -0.896 -0.898 -0.903 -0.864 -0.879 -0.885 -0.783 -0.828 -0.874
0.80 0.00 -0.034 -0.011 0.026 -0.054 -0.003 0.059 -0.113 -0.005 0.147
0.80 0.30 -0.995 -0.994 -0.994 -0.994 -0.995 -0.993 -0.992 -0.992 -0.992

Note: Bias of the estimated indirect long-run effect of Team Spatial relative to the one in the true model.
λ0 and γ0 represent spatial and time dependence in the DPG of the dependent variable Y, α0 and ψ0

represent spatial and time dependence in the DPG of the covariate X.
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E Additional graphs and simulation results

Figure E.1: NUTS regions used in the simulation.

Figure E.2: Bias of Team Dynamic neglecting the spatial dimension, but applying a
spatial lag of X specification. The vertical axis describes γTD − γ0, the horizontal axis
depicts γ0. Labels denote spatial dependence in the DGP (λ0).
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Figure E.3: Bias of Team Dynamic neglecting the spatial dimension. The vertical axis
describes γTD − γ0, the horizontal axis depicts γ0. Labels denote spatial dependence in
the DGP (λ0). Based on German NUTS 2 regions.

Figure E.4: Bias of Team Spatial neglecting the time dimension. The vertical axis
describes λTS − λ0, the horizontal axis depicts λ0. Labels denote spatial dependence in
the DGP (γ0). Based on German NUTS 2 regions.
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Figure E.5: Bias of Team Dynamic neglecting the spatial dimension. The vertical axis
describes γTD − γ0, the horizontal axis depicts γ0. Labels denote spatial dependence in
the DGP (λ0). Based on row-normalized spatial weights matrix.

Figure E.6: Bias of Team Spatial neglecting the time dimension. The vertical axis
describes λTS − λ0, the horizontal axis depicts λ0. Labels denote spatial dependence in
the DGP (γ0). Based on row-normalized spatial weights matrix.
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